Metabolomics 101

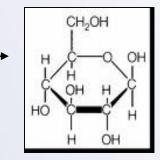
UAB Metabolomics Training Course July 17-21, 2017

Wimal Pathmasiri and Delisha Stewart NIH Eastern Regional Comprehensive Metabolomics Resource Core (ERCMRC) Department of Nutrition – Nutrition Research Institute University of North Carolina at Chapel Hill

Metabolomics

- The metabolome is the low molecular weight complement of cells, tissues, or biological fluids.
- Metabolomics investigations generally employ NMR or one of a number of types of chromatography coupled MS methods
- Metabolomics makes it feasible to uniquely profile the biochemistry of an individual, or model, apart from, or in addition to, the genome.
- Metabolomics is being used to reveal biomarkers for the early detection and diagnosis of disease, to predict outcomes, monitor therapeutic treatments and interventions, and to provide insights into biological mechanisms.

The relation of proteins and metabolites to the genome

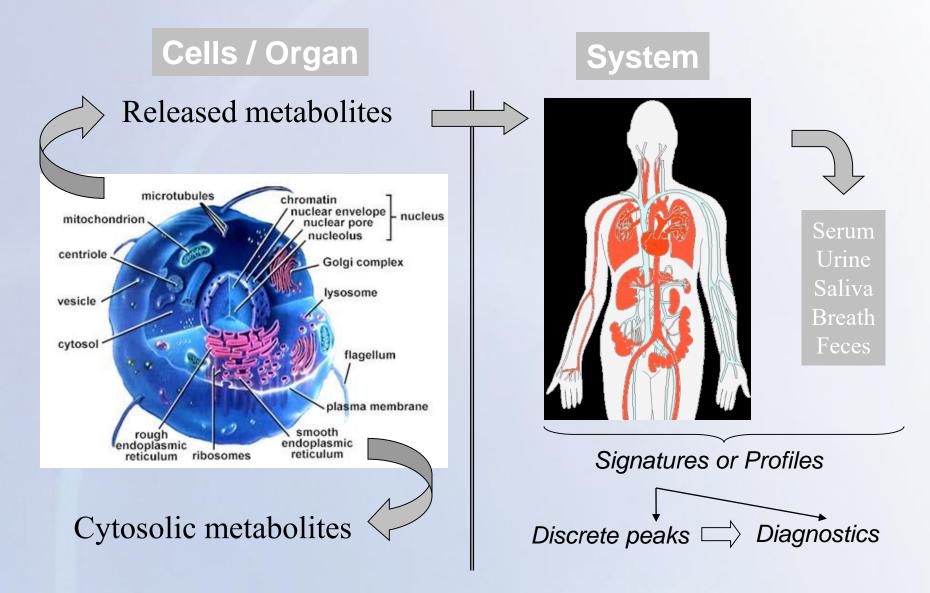

DNA

DNA contains genetic instructions to

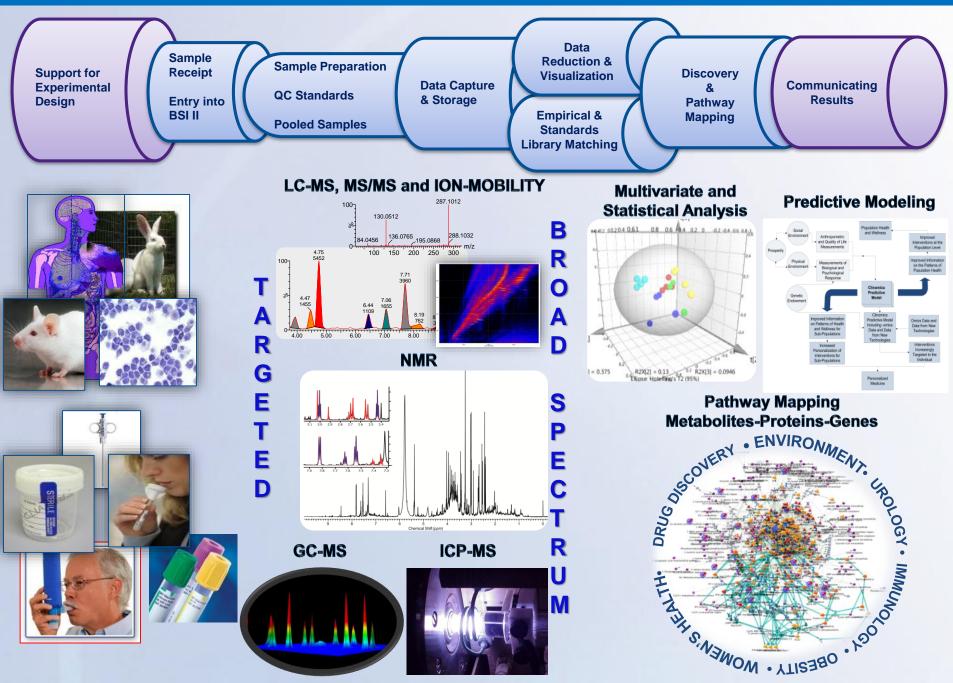
- make components of cells
- regulate the use of these components

Proteins

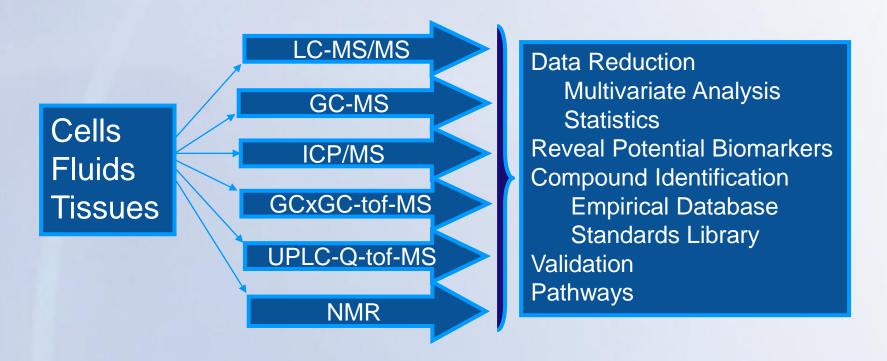
Proteins are made of sequences of amino acids; the sequence defined by the gene. Proteins are the enzymes that catalyze or accelerate chemical reactions in metabolism



Metabolites

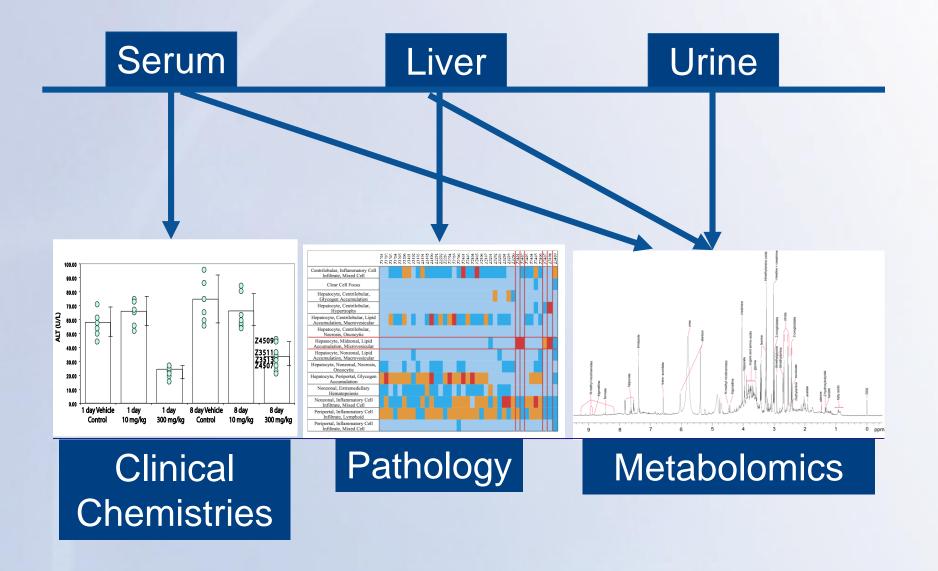

Metabolites are intermediates and products of metabolism. **Catabolism:** the processes to breaks down large molecules.

Anabolism: the process to use catabolism energy to synthesize molecules


Cells, Tissues, and Noninvasive Fluids

NIH Eastern Regional Comprehensive Metabolomics Resource Core at NRI

The analysis of the small molecule diversity present in a biological system and the pattern of changes arising from disease, dysfunction, disorder, or from the therapeutic or adverse effects of drugs.

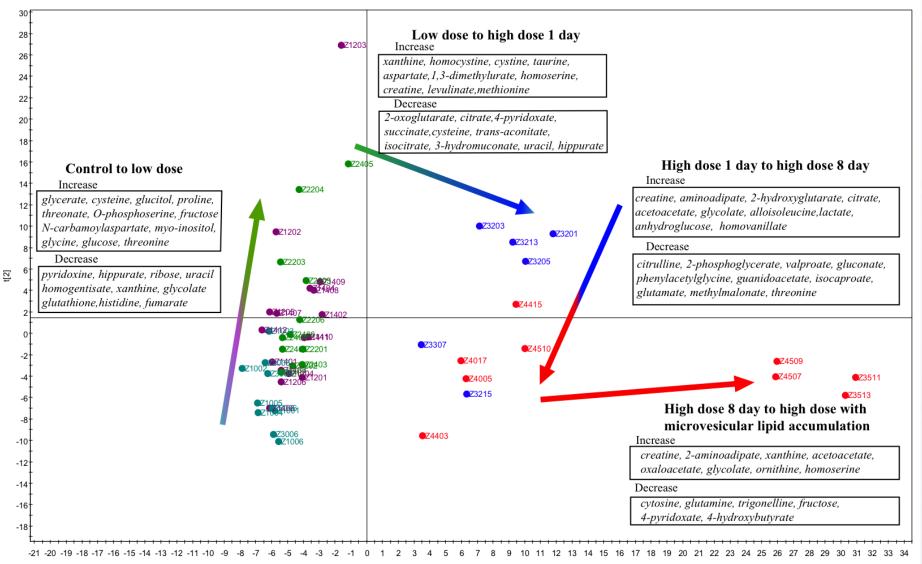


~6,500 discrete small molecule metabolites, ~ 25,000 genes, ~100,000 transcripts, and 1,000,000 proteins

Optimal and Minimal Sample Volumes

	Minimum sample for MS Based Detection	Minimum Sample for NMR- Based Detection	Optimal Sample	
Serum	50 ul	100 ul	1 ml	
Urine	50 ul	200 ul	1 ml	
Feces	20 mg	20 mg	500 mg	
Tissue	50 mg	100 mg	500 mg	
Cells	1x10 ⁶	1x10 ⁷	1x10 ⁷	

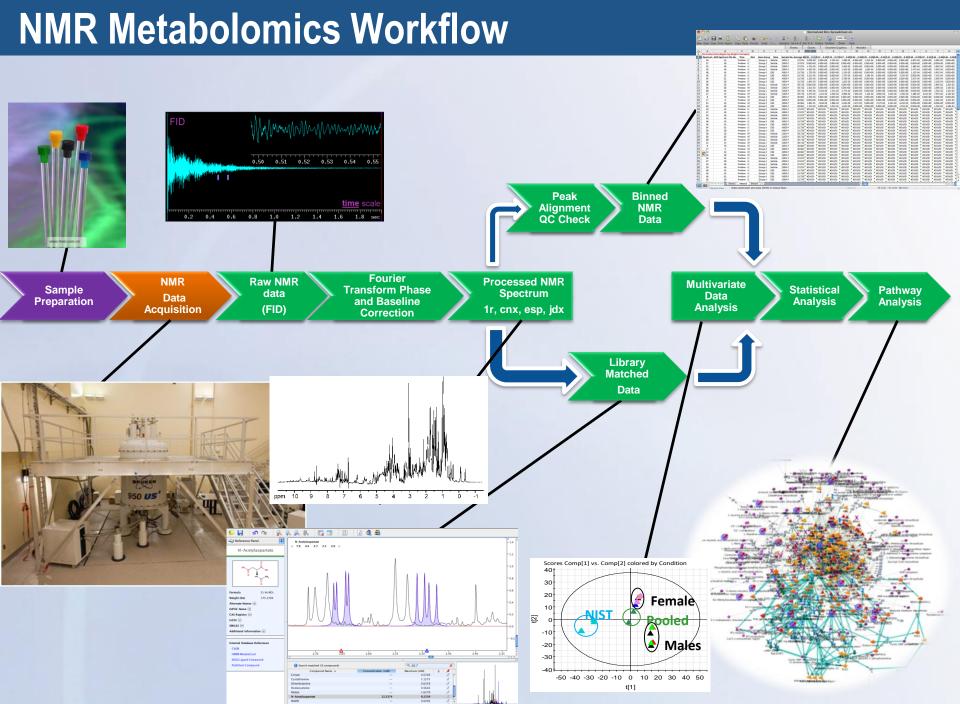
Cells, Tissues, and Noninvasive Fluids



Preclinical: Monitoring for Adverse Side Effects: DILI

- Drug-induced liver injury (DILI) accounts for 80% of the drug failure rate: pre-clinical through post market.
- Non-invasive markers are needed to determine the potential for DILI during treatment.
- Patients taking the anti-TB drug, isoniazid (INH), are at risk for developing liver injury. INH is one of the five top drugs with causal relation to liver injury and transplant in the US.
- Rats were dosed with INH for 1 or 8 days at low dose 'no affect' levels and at concentrations that resulted in microvesicular lipid accumulation (MVLA) of the liver- a reversible pathology currently diagnosed by biopsy and pathology.
- Metabolomics was used to determine urinary markers to correlate with MVLA diagnosis and its onset.

Sumner et al., 2009 NIH Grant GM75903


Cells, Tissues, and Noninvasive Fluids

NMR Based Metabolomics Analysis

NMR Spectroscopy

- A robust, reliable, and highly reproducible technique in metabolomics analysis
- Quantitative and non-destructive method
- Most labs use 600 950 MHz Spectrometers
- The higher the field strength, the higher the sensitivity and resolution
- Broad-spectrum metabolomics
 - NMR binning (high throughput)
- Targeted metabolomics
 - Metabolite profiling and quantification of selected metabolites or a panel of metabolites

NMR data acquisition is performed by using methods cited in Beckonert et al. (2007), Nature Protocols, 2 (11), 2692-2703.

Important Steps

- Study design
 - Match for factors such as gender, ethnicity, age, BMI (human studies)
 - Use of same strains in animal studies
- Sample collection
 - Collection vials, anticoagulant use (heparin, citrate, EDTA)
- Sample storage
 - -20 °C, -80 °C, minimize freeze-thaw cycles
- Sample preparation
 - Optimize the methods and use them consistently throughout study
 - Daily balance and pipette checks
- Use of Quality Check (QC) samples
 - Pooled QC samples (Phenotypic and combined pooled samples)
 - Use matching external pooled QC samples where pool samples cannot be prepared from study samples
- Consistency and reproducibility are the keys for a successful metabolomics study

Sample Preparation for Metabolomics Analysis

Current sample preparation practices (in brief)

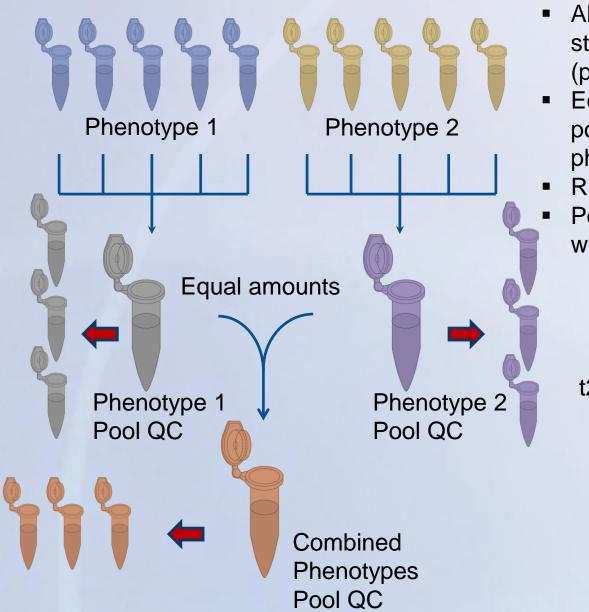
Biofluids

- Dilute with D₂O/ buffer/ 0.9% Saline
- Add internal standard (ISTD, eg. Chenomx) solution or formate (for serum).
- Centrifuge and transfer an aliquot into NMR tube

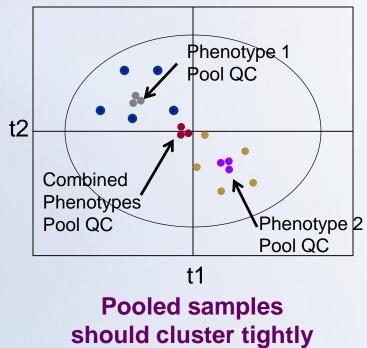
Tissue and Cells

- Homogenization performed in ice cold 50/50 acetonitrile/water
- Supernatant dried down (lyophilized)
- Reconstituted in D₂O and ISTD (eg. Chenomx) solution

Pooled QC Samples (Sample Unlimited)

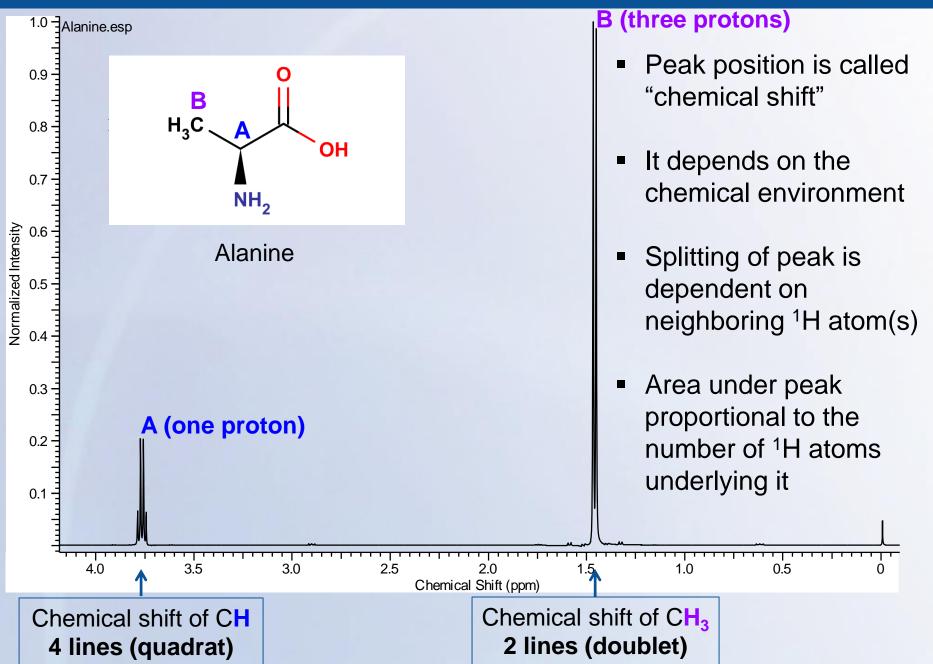

- Mix equal volume of study samples to get pooled QC samples
- 10% QC samples

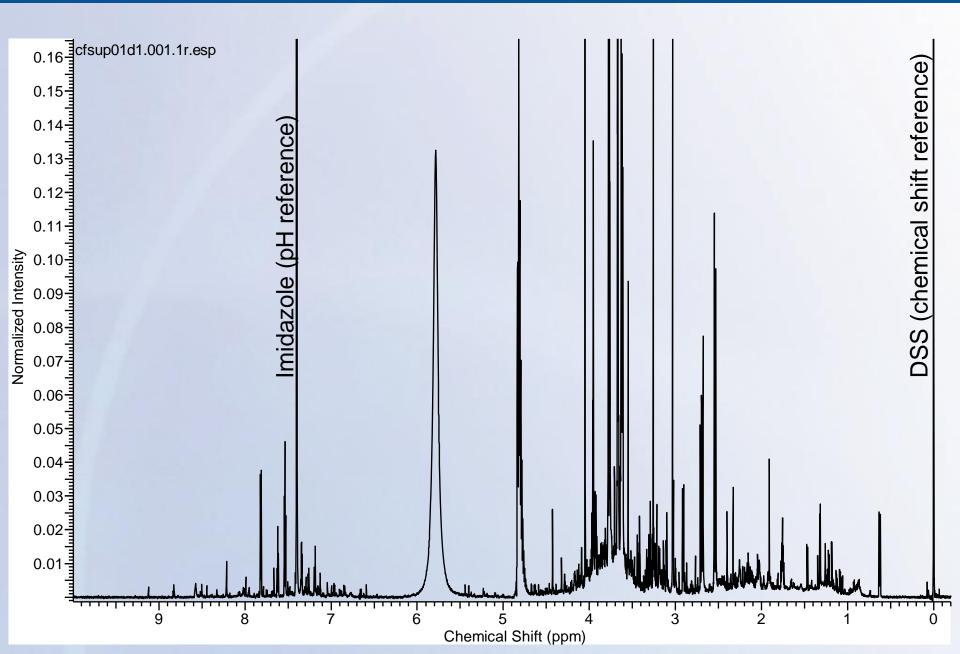
Pooled QC Samples (Sample Limited)


- Use independent pool of similar samples
- 10% QC samples
- Daily balance and pipette check

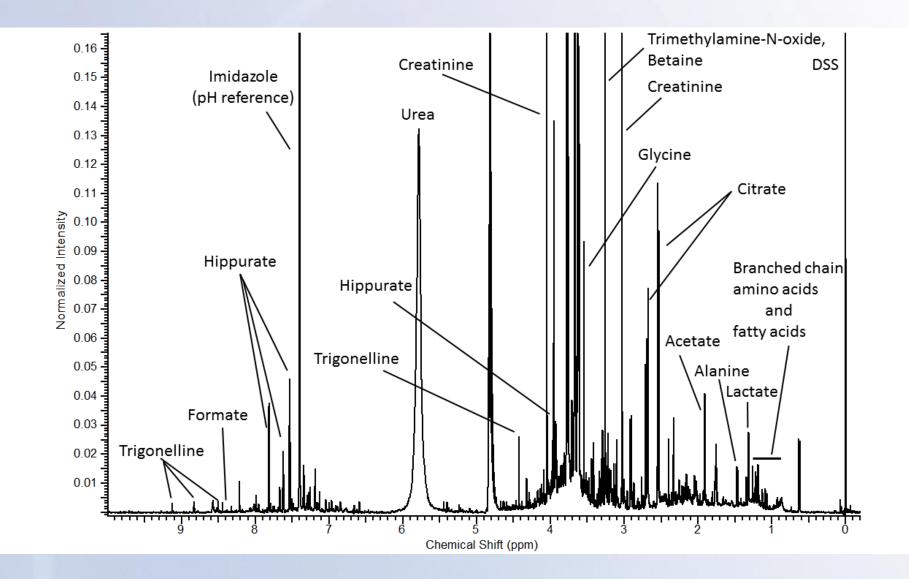
Samples are randomized for preparation and data acquisition

Pooled QC Samples

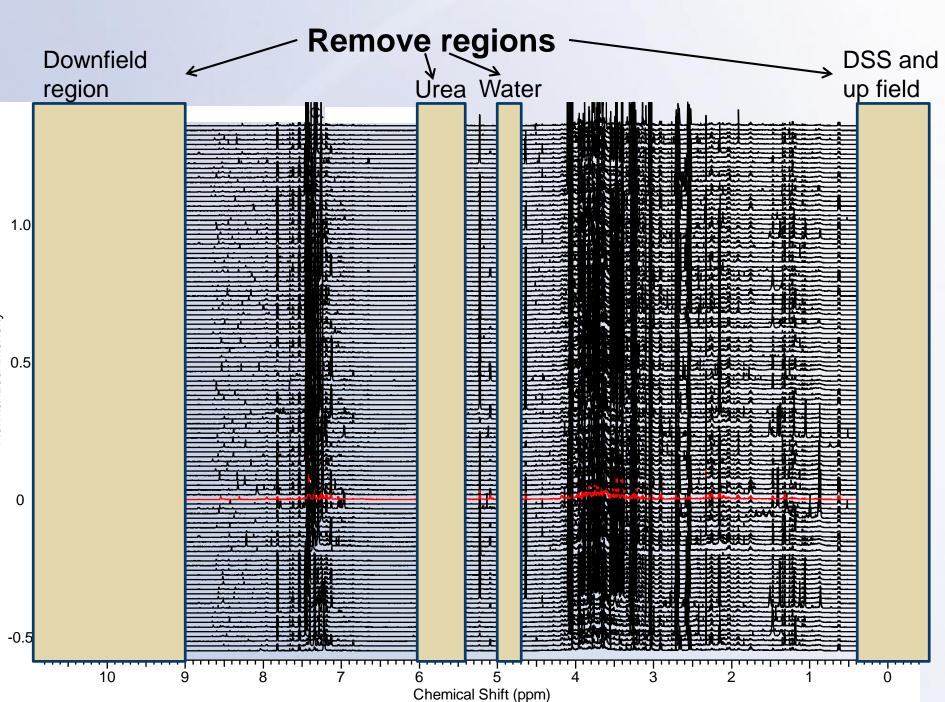

- Aliquots from each sample in the study phenotype are pooled (phenotypic pool)
- Equal amount of each phenotypic pools are pooled (Combined phenotypic pool)
- Replicates of pools are prepared
- Pool samples are prepared along with the study samples


NMR Data

- A typical ¹H NMR Spectrum consists of thousands of sharp lines or signals.
- The intensity of the peak is directly related to the number of protons underlying the peak.
- The position of a particular peak in the X-axis of the NMR spectrum is called the "Chemical Shift" and it is measured in ppm scale
- The NMR spectrum obtained for the biological sample is referenced using a reference compound such as DSS, TSP, or Formate added to the sample in sample preparation step.
- pH indicator may also be used (for example, Imidazole)


¹H NMR Spectrum for alanine

Typical ¹H NMR Spectrum of urine


Typical ¹H NMR Spectrum of Urine (annotated)

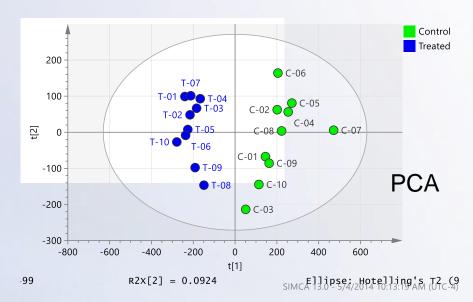
Broad Spectrum Metabolomics NMR Binning

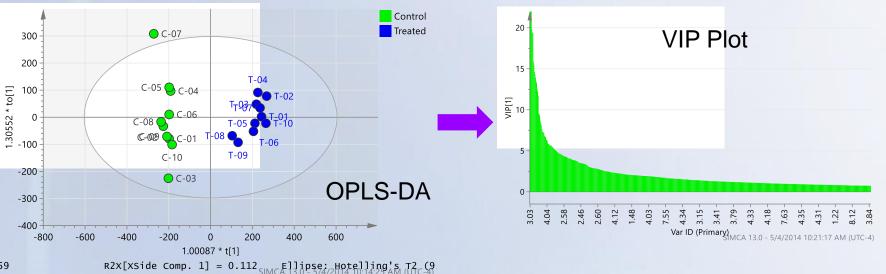
Binning

Normalized Intensity Samples			
-0.5-			0

Normalized Intensity

Binning


- Integrate bins (0.04 ppm bin size)
- Normalize bins to the total integral of each spectrum
- Merge metadata
- Result is a spreadsheet ready for further multivariate data analysis and other statistical analysis


Sample ID	Disease Group	[0.40 0.46]	[0.46 0.52]	[0.52 0.54]	[0.54 0.57]	[0.57 0.60]	[0.60 0.66]	[0.66 0.68]	[0.68 0.71]	[0.71 0.75]
C0559	Cases	7.60E-05	0.00E+00	7.32E-02	8.48E-02	3.20E-02	1.84E+00	1.31E-01	3.60E-01	3.67E-01
C0629	Cases	0.00E+00	1.78E-02	0.00E+00	2.18E-02	0.00E+00	1.08E+01	0.00E+00	0.00E+00	3.02E-02
C0640	Cases	3.44E-04	0.00E+00	1.83E-03	1.86E-04	0.00E+00	4.51E+00	0.00E+00	0.00E+00	0.00E+00
C0835	Cases	6.41E-04	0.00E+00	6.44E-03	0.00E+00	3.96E-03	3.28E+00	0.00E+00	5.12E-03	1.75E-02
D0613	Cases	6.63E-03	0.00E+00	0.00E+00	1.06E-02	0.00E+00	5.79E+00	0.00E+00	6.36E-02	3.02E-01
D0762	Cases	0.00E+00	0.00E+00	1.79E-02	1.98E-02	0.00E+00	9.37E+00	0.00E+00	0.00E+00	1.74E-02
D1113	Cases	3.14E-03	2.42E-03	8.02E-02	1.04E-01	5.32E-03	3.74E+00	0.00E+00	2.02E-02	1.84E-01
D1158	Cases	0.00E+00	3.71E-03	2.35E-02	4.83E-02	0.00E+00	5.02E+00	0.00E+00	1.91E-02	0.00E+00
D2090	Cases	0.00E+00	0.00E+00	2.45E-03	9.98E-04	0.00E+00	5.76E+00	0.00E+00	1.24E-02	1.04E-02
E0004	Cases	1.72E-03	0.00E+00	6.85E-02	3.05E-02	0.00E+00	1.47E+00	6.90E-02	3.61E-01	4.08E-01
E0195	Cases	0.00E+00	1.69E-03	5.57E-02	6.29E-02	0.00E+00	2.77E+00	1.34E-01	2.04E-01	4.56E-01
E0225	Cases	1.25E-03	0.00E+00	4.40E-03	1.69E-02	0.00E+00	9.17E+00	0.00E+00	1.08E-02	2.30E-02
E0309	Cases	4.11E-03	0.00E+00	2.23E-02	7.54E-03	3.08E-03	3.54E+00	0.00E+00	3.28E-02	9.09E-01
E0487	Cases	1.72E-03	0.00E+00	0.00E+00	1.00E-02	0.00E+00	4.00E+00	0.00E+00	1.36E-02	0.00E+00
F0036	Cases	1.66E-02	0.00E+00	0.00E+00	2.06E-02	0.00E+00	1.22E+01	1.04E-02	0.00E+00	5.97E-01
F0108	Cases	0.00E+00	2.31E-03	6.30E-03	1.11E-02	0.00E+00	7.17E+00	0.00E+00	1.65E-02	2.21E-01
A0233	Control	0.00E+00	1.86E-02	0.00E+00	1.82E-02	0.00E+00	1.61E+01	0.00E+00	2.91E-03	0.00E+00
A0490	Control	0.00E+00	0.00E+00	2.99E-03	3.60E-02	0.00E+00	2.97E+00	0.00E+00	4.00E-02	5.46E-01
A2003	Control	0.00E+00	0.00E+00	3.45E-02	2.20E-02	0.00E+00	1.80E+00	0.00E+00	0.00E+00	0.00E+00
C0586	Control	0.00E+00	1.69E-02	0.00E+00	6.64E-03	0.00E+00	1.92E+01	0.00E+00	6.51E-02	0.00E+00
C2177	Control	0.00E+00	0.00E+00	3.02E-02	3.59E-02	0.00E+00	2.35E+00	0.00E+00	3.19E-02	1.49E-01
D0177	Control	9.21E-03	0.00E+00	1.69E-02	1.47E-02	0.00E+00	2.43E+00	0.00E+00	4.46E-02	0.00E+00
D0729	Control	0.00E+00	1.88E-03	5.58E-02	7.87E-02	2.92E-02	3.16E+00	6.59E-02	2.80E-01	4.30E-01
D0909	Control	0.00E+00	1.08E-03	0.00E+00	5.69E-03	0.00E+00	2.49E+00	0.00E+00	1.01E-02	1.87E-01
D0945	Control	0.00E+00	4.79E-04	7.00E-03	0.00E+00	4.19E-03	3.99E+00	0.00E+00	1.11E-03	3.96E-02
D1174	Control	0.00E+00	9.33E-04	0.00E+00	3.43E-03	1.30E-02	7.21E+00	6.53E-03	0.00E+00	1.66E-02
D2054	Control	1.55E-03	0.00E+00	0.00E+00	1.22E-02	0.00E+00	2.07E+00	0.00E+00	1.28E-02	3.90E-01
D2062	Control	2.39E-05	0.00E+00	6.04E-02	2.99E-02	0.00E+00	4.94E+00	0.00E+00	9.95E-03	0.00E+00
D2079	Control	2.73E-02	0.00E+00	1.81E-03	1.17E-02	0.00E+00	3.38E+01	7.87E-02	0.00E+00	5.91E+00

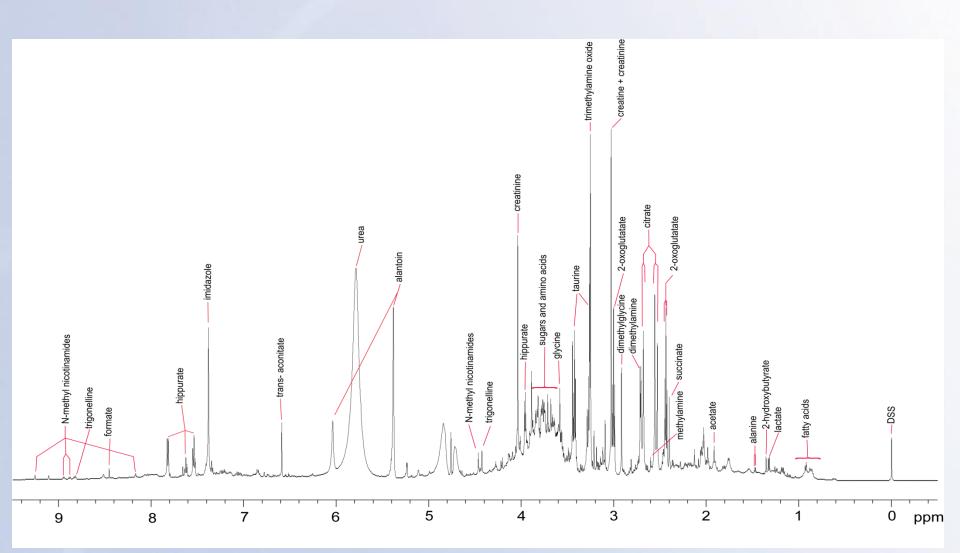
Multivariate Data Analysis & Other Statistical Analysis

Multivariate data analysis and other statistical analyses

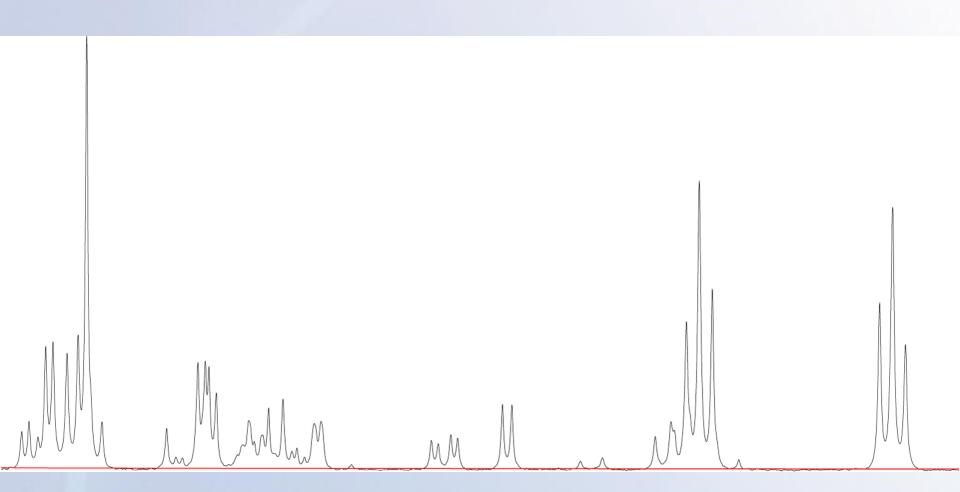
- Mean centered and scaled data
- Non-supervised analysis
 - Principal component analysis (PCA)
- Supervised analysis
 - PLS-DA and OPLS-DA
- Loadings plots and VIP Plots to identify discriminatory bins
- p-Value, fold change

Library Matching (and quantifying) Using Chenomx

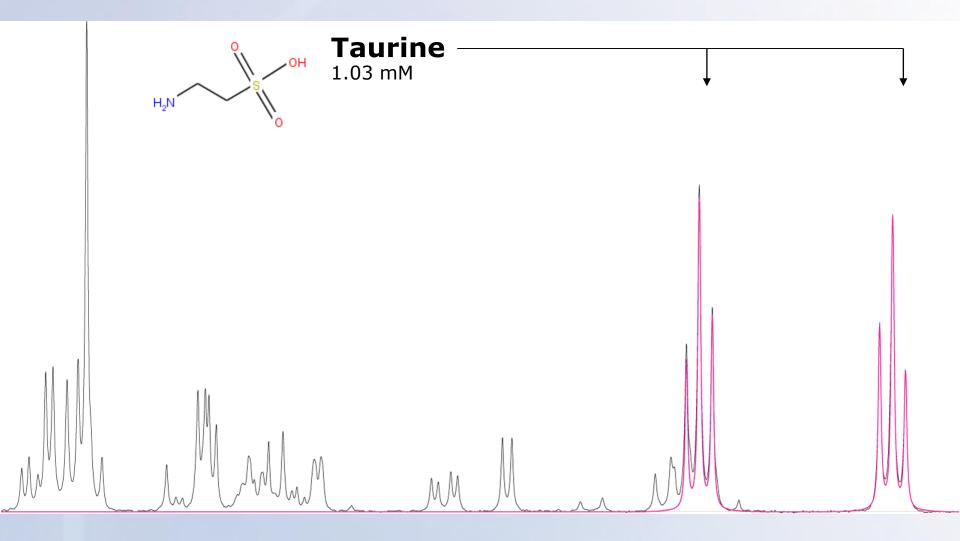
Chenomx Library

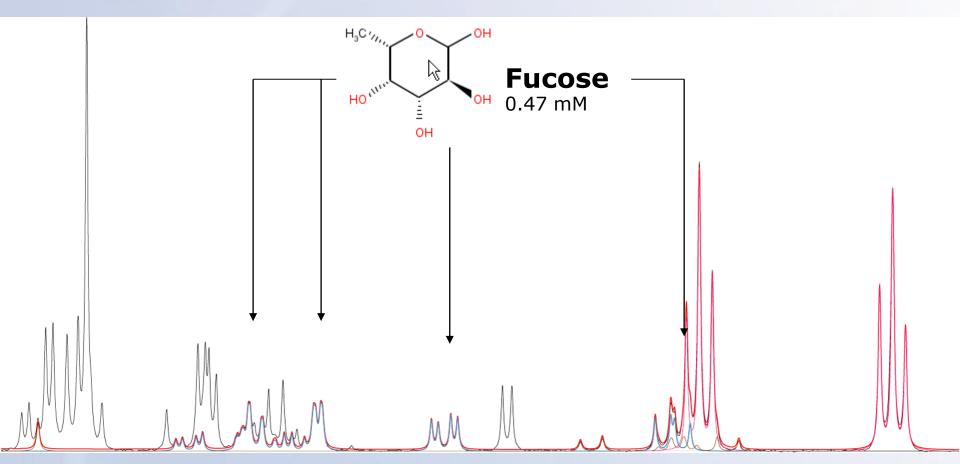

1,3-Dihydroxyacetone, 1,3-Dimethylurate, 1,6-Anhydro-β-D-glucose, 1,7-Dimethylxanthine, 1-Methylnicotinamide, 2'-Deoxyadenosine, 2'-Deoxyguanosine, 2'-Deoxyinosine, 2-Aminoadipate, 2-Aminobutyrate, 2-Ethylacrylate, 2-Furoate, 2-Hydroxy-3-methylvalerate, 2-Hydroxybutyrate, 2-Hydroxyglutarate, 2-Hydroxyisobutyrate, 2-Hydroxyisocaproate, 2-Hydroxyisovalerate, 2-Hydroxyphenylacetate, 2-Hydroxyvalerate, 2-Methylglutarate, 2-Octenoate, 2-Oxobutyrate, 2-Oxocaproate 2- Overt320 metabolites rate, 2-Phosphoglycerate, 3,4-Dihydroxymandelate, 3,5-Dibromotyrosine, 3-Aminoisobutyrate, 3-Chlorotyrosine, 3-Hydroxy-3-methylglutarate, 3-Hydroxybutyrate, 3-Hydroxyisovalerate, 3-Hydroxymandelate, 3-Hydroxyphenylacetate, 3-Indoxylsulfate, 3-Methyl-2-oxovalerate, 3-Methyladipate, 3-Methylxanthine, 3-Phenyllactate, 3-Phenylpropionate, 4-Aminobutyrate, 4-Aminohippurate, 4-Hydroxy-3methoxymandelap H Sensitive Hibrary of, 1H Ir NMR Spectra xyphenyllactate, 4-Pyridoxate, 5,6-Dinydrothymne, 5,6-Dinydrothymne, 5,6-Dinydrothymne, 5-Methoxysalicylate, Acetaldehyde, Acetamide, Acetaminophen, Acetate, Acetoacetate, Acetone, Acetylsalicylate, Adenine, Adenosine, Adipate, Alanine, Allantoin, Alloisoleucine, Anserine, Arginine, Argininosuccinate, Asparagine, Aspartate, Benzoate, Betain Clinic Button 200 by Cete, Caffeine, Caprate, Caprylate, Carnitine, Carnosine, Choline, Cinnamate, Citrate, Citrulline, Creatine, Cysteine, Cysteine, Cysteine, Cytosine, DSS (Chemical Shift Indicator), Dimethylamine, Epicatechin, Ethanol, Ethanolamine, Ethylene glycol, Ethylmalonate, Ferulate, Formate, Fructose, Fucose, Fumarate, Galactarate, Galactitol, Galactonate, Galactose, Gentisate, Glucarate, Glucose, Glutamate, Glutamine, Glutarate, Glutaric acid monomethyl ester, Glutathione, Glycerate, Glycerol, Glycine, Glycolate, Glycylproline, Guanidoacetate, Guanine, Hippurate, Histidine, Homocitrulline, Homocystine, Homogentisate, Homoserine, Homovanillate, Hypoxanthine, Ibuprofen, Imidazole, Indole-3-acetate, Inosine, Isobutyrate, Isocaproate, Isocitrate, Isoleucine, Isopropanol, Isovalerate, Kynurenate, Kynurenine, Lactate, Lactose, Leucine, Levulinate, Lysine, Malate, Maleate, Malonate, Mannitol, Mannose, Methanol, Methionine, Methylamine, Methylguanidine, Methylmalonate, Methylsuccinate, N,N-Dimethylformamide, N,N-Dimethylglycine, N-Acetylaspartate, N-Acetylglutamate, N-Acetylglycine, N-Carbamoyl-β-alanine, N-Carbamoylaspartate, N-Isovaleroylglycine, NAD+, Niacinamide, Nicotinate, O-Acetylcarnitine, O-Phosphocholine, O-Phosphoethanolamine, O-Phosphoserine, Ornithine, Oxalacetate, Oxypurinol, Pantothenate, Phenol, Phenylacetate, Phenylacetylglycine, Phenylalanine, Pimelate, Proline, Propionate, Propylene glycol, Protocatechuate, Pyridoxine, Pyroglutamate, Pyruvate, Quinolinate, Riboflavin, Ribose, S-Adenosylhomocysteine, S-Sulfocysteine, Salicylate, Salicylurate, Sarcosine, Serine, Suberate, Succinate, Succinylacetone, Sucrose, Tartrate, Taurine, Theophylline, Threonate, Threonine, Thymine, Thymol, Tiglylglycine, Trigonelline, Trimethylamine, Trimethylamine N-oxide, Tryptophan, Tyramine, Tyrosine, Uracil, Urea, Uridine, Urocanate, Valerate, Valine, Valproate, Vanillate, Xanthine, Xanthosine, Xylose, cis-Aconitate, myo-Inositol, o-Cresol, p-Cresol, trans-4-Hydroxy-L-proline, trans-Aconitate, β-Alanine, π-Methylhistidine, π-Methylhistidine

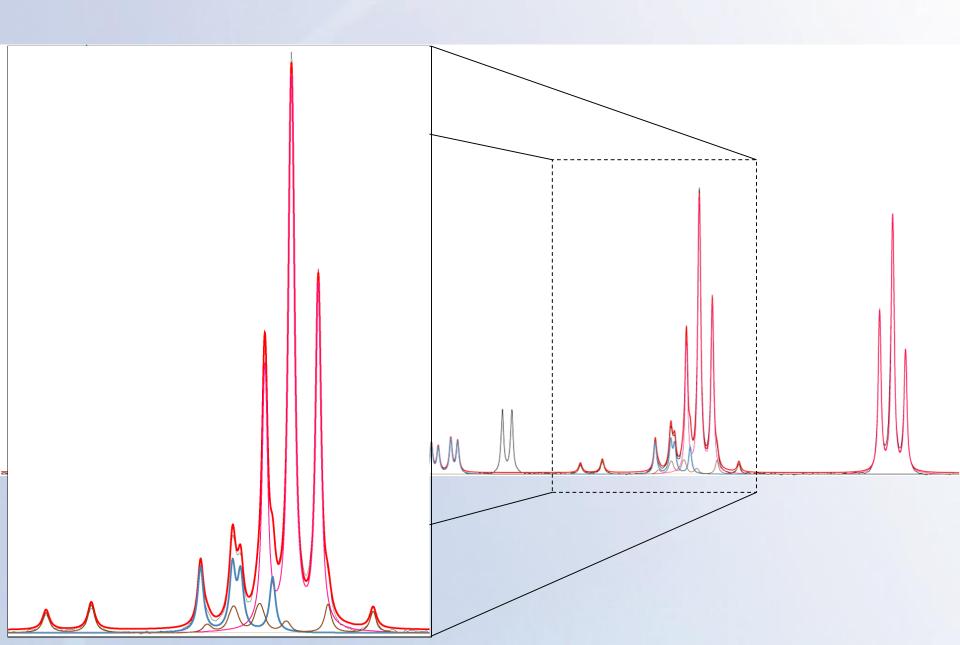
chemical shift and pH dependence

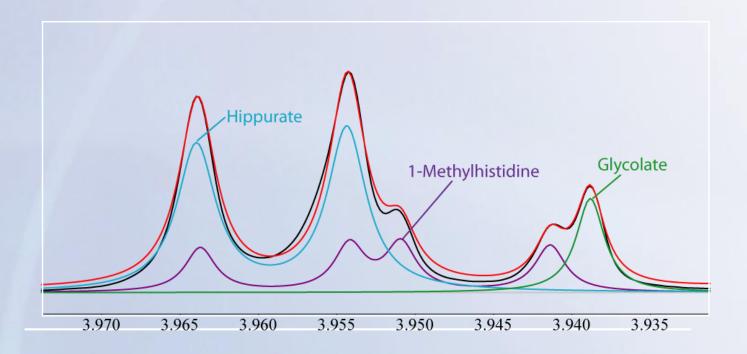


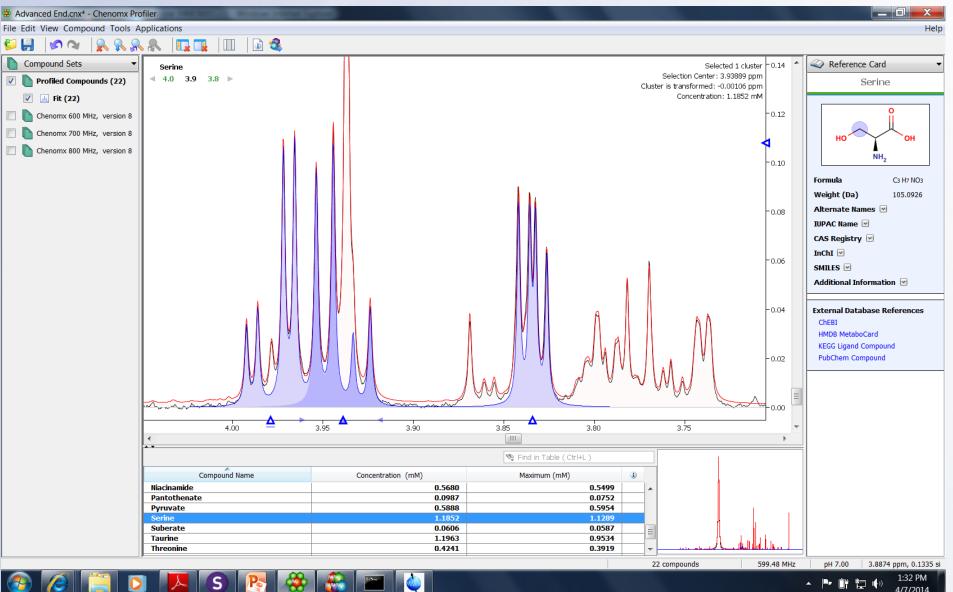
Source: http://www.chenomx.com/software/


NMR Spectrum of Urine with Chenomx Library Fit of Metabolites


Fitting of metabolites


Fitting taurine


Fitting fucose


Additive Fit

Chenomx Helps Resolving Ambiguity in Highly Overlapped Regions

Additive fit

门 1(-))

4/7/2014

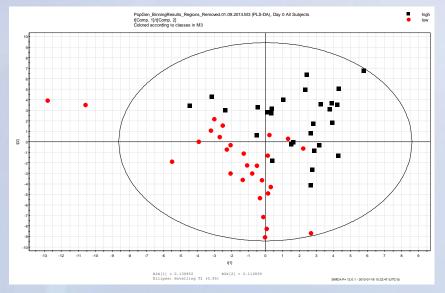
Interpretation & Metabolic Pathway Analysis

Interpreting results and Pathway Analysis

Once we have performed a metabolomics analysis,

- We find some important metabolites that are responsible for the separation of study groups.
- The next question is "What it means?
- How do you correlate these finding to your study questions?
- Does it explain any findings that are meaningful for your study hypotheses?
- Does it generate a new hypothesis?
- How do you answer these questions?

Next step is to interpret results and metabolic pathway analysis


Interpreting results and Pathway Analysis

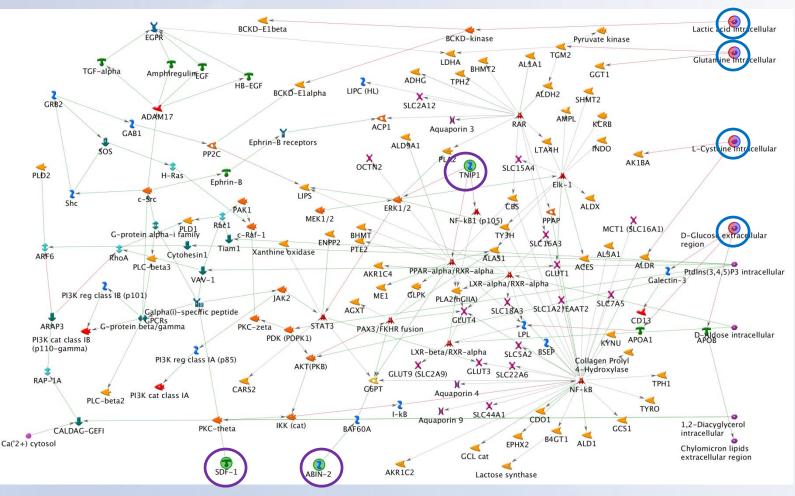
- There is a number of freely available software

 Metaboanalyst, MetScape 3 for Cytoscape, metaP-Server, web based KEGG Pathways.
- Another way of interpreting metabolomics results is to use traditional biochemistry text books.
- The input for pathway analysis is typically a list of metabolites (with any fold change or p-value information)
- Genomics, transcriptomics, and/or proteomics data can be integrated
- Once these pathways are identified, you may perform a targeted metabolomics analysis to validate the findings from global analysis.

Day 0 serum- Predicting Day 28 Response to Vaccine

PLS-DA Day 0 – High Responders (Black) vs Low Responders (Red)

Subset of Metabolites that Influence the Separation of Subjects at Day 0 (VIP \ge 1 or p-value \le 0.1)


Isoleucine**	Creatinine**			
Leucine**	Cysteine**			
Valine	Histidine			
3-Methyl-2-oxo-isovalerate	Choline			
3-Hydroxybutyrate	Glucose			
Lactate	Betaine			
Alanine	TMAO			
Acetate**	Glycine			
Proline*	Glycerol			
Glutamate**	Serine			
Glutamine**	Creatine			
Pyruvate	Tyrosine*			
2-Oxoisocaproate	Histidine			
Methylguanidine**	Tryptophan			
Formate	Phenylalanine			

*p-value < 0.05, **p-value ≤ 0.1

Preliminary results

Day 0 High vs Low Responders

GeneGo Network Analysis

Receptor ligands/binding proteins related to gene markers from genetics analysis. Majumder et al. 2012, Eur. J. Human Genetics, 1-7

O Metabolites that linked in the pathways Preliminary results

Some Software available for NMR Based Metabolomics

FREE

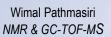
- NMR Data Processing
 - ACD Software for Academics (ACD Labs, Toronto, Canada)
- Multivariate data analysis
 - MetaboAnalyst 3.0 (http://www.metaboanalyst.ca)
 - MetATT (http://metatt.metabolomics.ca/MetATT/)
 - MUMA (http://www.biomolnmr.org/software.html)
 - Other R-packages
- Library matching and Identification
 - Bayesil (<u>http://bayesil.ca/</u>, includes quantification)
 - BATMAN
 - Use of databases
 - Birmingham Metabolite library, HMDB, BMRB
- Pathway analysis
 - Metaboanalyst, MetScape 3 for Cytoscape, metaP-Server, KEGG Also available through www.metabolomicsworkbench.org

Some Software available for NMR Based Metabolomics

COMMERCIAL

- NMR Data-preprocessing
 - ACD Software (ACD Labs, Toronto, Canada)
 - Chenomx
- Multivariate data analysis
 - SIMCA 13
- Other statistical analysis
 - SAS, SPSS
- Library matching and quantification
 - Chenomx
- Pathway analysis
 - GeneGo (MetaCore Module)
 - Ingenuity Pathway Analysis (IPA)

ERCMRC at UNC Chapel Hill



Yuanyuan Li

LC-MS/MS

LC-TOF-MS

Delisha Stewart NMR and LC-TOF-MS

Maria Moreno NMR and LC-MS/MS

Reza Ghanbari Postdoctoral Fellow

Rose Ewald Graduate Studies

UNC NUTRITION OBESITY

Susan Sumner PI. ERCMRC

Susan McRitchie Program Coordinator

Data Analysis

Scott Watson

Neurotransmitter

LC/MS

NCRC

Nick Gillitt Dole 700 MHz NMR 6500 Sciex LC-MS

Colin Kave NCSU 6500 Sciex **Triple Quad**

UNC-G **Q-Exactive**

Debby Reed GC-MS GC-TOF-MS

DHMRI

Kevin Knagge

700 and 950 MHz NMR

Jason Winnike

NMR

2D-GC-TOF-MS

Stephen Orena LC-MS/MS

Martin Kohlmeier Training

Tim Fennell Director. Analytical Chemistry & **Pharmaceutics**

Yan Lan Yueh LC-MS

RTI

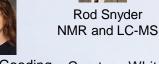
Jessica Gooding LC-MS

UNC Charlotte Bioinformatics

LC-MS

Owen Myers

David Kirchner LC-MS/MS


LC-TOF-MS

Huiyuan Chen

Courtney Whitaker

